Li, Peng
Release time:2017.12.14
source:本站
Peng Li
Research area: strongly correlated many-body system in low dimensions, including the novel collective quantum spin systems, spin liquid, supersolid, spin transport, phase transition and critical phenomena.
Address: College of Physical Science and Technology, 610064 Chengdu, Sichuan Province, China
E-mail: lipeng@scu.edu.cn
Courses: Mechanics (http://cc.scu.edu.cn/G2S/123.cc), Solid State Physics
Research paper:
Rigorous proof for the non-local correlation function in the transverse Ising model with ring frustration, Jian-Jun Dong, Zhen-Yu Zheng, Peng Li*, Phys. Rev. E 97, 012133 (2018). Preprint, arXiv:1703.07189.
Topological Fulde-Ferrell Superfluids in Triangular Lattices, Long-Fei Guo, Peng Li*, Su Yi, Phys. Rev. A 95, 063610 (2017). Preprint, arXiv:1701.04190.
Topological phases characterized by spin Chern number and skyrmion number in triangular Bose-Hubbard model, Long-Fei Guo and Peng Li*, Modern Physics Letters B 31, 1750221 (2017).
The a-cycle problem in XY model with ring frustration, Jian-Jun Dong and Peng Li*, Modern Physics Letters B 31, 1750061 (2017). Preprint, arXiv:1703.00595.
The a-cycle problem for transverse Ising ring, Jian-Jun Dong, Peng Li* and Qi-Hui Chen, J. Stat. Mech. 113102 (2016). Preprint, arXiv:1605.08910.
Fractional Mott insulator-to-superfluid transition of Bose–Hubbard model in a trimerized Kagome optical lattice, Qi-Hui Chen, Peng Li*, and Haibin Su*, , J. Phys.: Condens. Matter 28, 256001 (2016).
Diverse solid and supersolid phases of bosons in a triangular lattice, Qi-Hui Chen and Peng Li*, Chin. Phys. B 23, 056701 (2014).
The ground state phase diagrams and low-energy excitation of dimer XXZ spin ladder, Qi-Hui Chen, Long-Fei Guo, Peng Li*, Physica E 64, 188 (2014).
Stripe phases in a frustrated spin-1/2 dimer Heisenberg model, L.-F. Guo, Q.-H. Chen and P. Li*, International Journal of Modern Physics B 28, 1450143 (2014).
Ground-state and finite-temperature properties of spin liquid phase in the J1–J2 honeycomb model, Xiang-Long Yu, Da-Yong Liu, Peng Li, Liang-Jian Zou, Physica E 59, 41 (2014).
Topological edge states in the spin 1 bilinear– biquadratic model, Peng Li and Su-Peng Kou, J. Phys.: Condens. Matter 24, 446001 (2012).
Contractor renormalization group theory of the even-leg spin Tori, Qi-Hui Chen and Peng Li, Modern Physics Letters B 24, 2725 (2010).
Incommensurate phase of a triangular frustrated Heisenberg model studied via Schwinger-boson mean-field theory, Peng Li, HaibinSu, Hui-Ning Dong and Shun-Qing Shen, J. Phys.: Condens. Matter 21, 326005 (2009).
Fermionic representation of a symmetrically frustrated SU(3) model: application to the Haldane-gap antiferromagnets, Peng Li and Shun-Qing Shen, Phys. Lett. A 6, 041 (2009).
The Kagome Antiferromagnet: A Schwinger-Boson Mean-Field Theory Study, Peng Li, Haibin Su and Shun-Qing Shen, Phys. Rev. B 76, 174406 (2007).
Magnetic quantum phase transition of cold atoms in an optical lattice, Peng-Bin He, Qing Sun, Peng Li, Shun-Qing Shen, and W. M. Liu, Phys. Rev. A 76, 043618 (2007).
The SU(3) bosons and the spin nematic state on the spin-1 bilinear-biquadratic triangular lattice, Peng Li, Guang-Ming Zhang and Shun-Qing Shen, Phys. Rev. B 75, 104420 (2007).
Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean-field theory, Peng Li and Shun-Qing Shen, Phys. Rev. B 72, 214439 (2005).
Contractor renormalization group theory of SU(N) chains and ladders, Peng Li and Shun-Qing Shen, Phys. Rev. B 71, 212401 (2005).
Two-dimensional gapless spin liquids in frustrated SU(N) quantum magnets, Peng Li and Shun-Qing Shen, New J. Phys. 6, 160 (2004).
Spintronic Faraday rotation spectroscopy and geometrical modulation of spin current in an Aharonov-Casher ring, Zhongshui Ma, Peng Li, and Shun-Qing Shen, Phys. Rev. B 70, 125318 (2004).
Analytical approach to the Curie temperature, T_c(S,d), of spin-S Ising model on d-dimensional hypercubic lattice, Peng Li and Yongxin Song, Phys, Lett. A 289, 147 (2001).
Effective mean-field theory based on cumulant expansion (EMFC) in treating the transition of the Potts model on hypercubic lattice, Peng Li and Yongxin Song, Phys. Rev. B 63, 134419 (2001).